报告时间:2021年09月14日,14:10-15:40
报告地点:北京交通大学思源西楼303教室
报告摘要:
近年来人工智能技术的发展,在诸多垂直领域取得了性能突破。但当我们将这些技术应用于医疗、司法、工业生产等风险敏感领域时,发现当前人工智能在稳定性、可解释性、公平性、可回溯性等“四性”方面存在严重缺陷。究其深层次原因,当前统计机器学习的基础——关联统计自身不稳定、不可解释、不公平、不可回溯可能是问题的根源。相对于关联统计,因果统计在保证“四性”方面具有更好的理论基础。但如何将因果统计融入机器学习框架,是一个开放并有挑战的基础性问题。本报告中,讲者将重点介绍将因果推理引入预测性问题所提出的稳定学习理论和方法,及其在解决OOD泛化问题方面的机会和挑战。
报告嘉宾:
崔鹏,清华大学计算机系长聘副教授,博士生导师。研究兴趣聚焦于大数据驱动的因果推理和稳定预测、大规模网络表征学习等。在数据挖掘及人工智能领域顶级国际会议发表论文100余篇,先后5次获得顶级国际会议或期刊论文奖,并先后两次入选数据挖掘领域顶级国际会议KDD最佳论文专刊。担任IEEE TKDE、ACM TOMM、ACM TIST、IEEE TBD等国际顶级期刊编委。曾获得国家自然科学二等奖、教育部自然科学一等奖、电子学会自然科学一等奖、北京市科技进步一等奖、中国计算机学会青年科学家奖、国际计算机协会(ACM)杰出科学家。