: 会议首页
: 组织机构
: 特邀专家
: 会议日程
: 论文交流
: 食宿安排
: 赞助支持
: 参会通知
: 会议地点
: 会议文集
: 以往会议
: 会议照片




技术问题,请联系网站管理员

© LAMDA 2005-2017

题目: 回复神经网络学习
报告人: 张蕾 教授 四川大学
摘要: 随着大数据时代的到来及深度神经网络的兴起,神经网络在图像理解、语音识别、自然语言处理等领域取得了令人瞩目的成功。回复神经网络作为神经网络的一种主要用于处理时序数据,广泛用于机器翻译、图像理解、情感分析、语音翻译等时序任务中。这一讲座将系统地对回复神经网络进行回顾,并针对其两个学习算法Back Propagation Through Time (BPTT) 和Real Time Recurrent Learning (RTRL) 进行介绍,并基于此对回复神经网络训练中存在的问题进行了“进一步的思考”。具体包括:(1)生物神经网络与人工神经网络;(2)回复神经网络的学习算法BPTT和RTRL;(3)回复神经网络训练过程中存在的“梯度消失”问题及相应的解决方法,基于此简要地介绍新的回复神经网络模型,如:Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) 及 Recurrent Highway Network (RHN)等。